Google Scholar, ResearchGate

Journals

  1. Green Recommender Systems: Understanding and Minimizing the Carbon Footprint of AI-Powered Personalization
    L. Wegmeth*, T. Vente*, A. Said, J. Beel. ACM Transactions on Recommender Systems
    [ACM Digital Library, PDF, code]

Conferences

  1. APS Explorer: Navigating Algorithm Performance Spaces for Informed Dataset Selection
    T. Vente, M. Heep, A. Abbas, T. Sperle, J. Beel, B. Goethals. ACM RecSys’25 (Demo Paper)
    [APS Explorer, ACM Digital Library, PDF, code]

  2. Automated Learning of Software Configuration Spaces is not Easy
    M. Weiß, R. Müller, L. Güthing, T. Vente, L. Wegmeth, I. Schaefer, M. Lochau. ACM SPLC’25 (Full Paper)
    [ACM Digital Library, PDF]

  3. Checky, the Paper-Submission Checklist Generator for Authors, Reviewers and LLMs
    J. Beel, B. Gipp, D. Jannach, A. Said, L. Wegmeth, T Vente. ECIR’25 (Demo Paper)
    [ACM Digital Library, PDF, code]

  4. From Clicks to Carbon: The Environmental Toll of Recommender Systems
    T. Vente, L. Wegmeth, A. Said, J. Beel. ACM RecSys’24 (Full Paper, Reproducibility Track)
    [ACM Digital Library, PDF, code, ACM RecSys’25 presentation]

  5. Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback Datasets
    L. Wegmeth, T. Vente, J. Beel. ACM RecSys’24 (LBR PAPER)
    [ACM Digital Library, PDF, code]

  6. Revealing the Hidden Impact of Top-N Metrics on Optimization in Recommender Systems
    L. Wegmeth, T. Vente, L. Purucker. ECIR’24 (Full Paper)
    [ACM Digital Library, PDF, code]

  7. From Theory to Practice: Implementing and Evaluating e-Fold Cross-Validation
    C. Mahlich, T. Vente, J. Beel CAIMLR’24 (Full Paper)
    [SPIE Digital Library, PDF, code]

  8. Introducing LensKit-Auto, an Experimental Automated Recommender System (AutoRecSys) Toolkit
    T. Vente, M.D. Ekstrand, J. Beel. RecSys’23 (Demo Track)
    [ACM Digital Library, PDF, code, video]

  9. Advancing Automation of Design Decisions in Recommender System Pipelines
    T. Vente. RecSys’23 (Doctoral Symposium)
    [ACM Digital Library]

Workshops, Tutorials, & Others

  1. The Potential of AutoML for Recommender Systems
    T. Vente, L. Wegmeth, J. Beel. HyPer Workshop @ ACM UMAP’25 (Full Paper)
    [ACM Digital Library, code]

  2. Greedy Ensemble Selection for Top-N Recommendations
    T. Vente, Z. Mehta, L. Wegmeth, J. Beel. RobustRecSys Workshop @ RecSys’24 (Full Paper)
    [CEUR Workshop Proceedings, PDF, code]

  3. Removing Bad Influence: Identifying and Pruning Detrimental Users in Collaborative Filtering Recommender Systems
    P. Meister, L. Wegmeth, T. Vente, J. Beel. RobustRecSys Workshop @ RecSys’24 (Short Paper)
    [CEUR Workshop Proceedings, PDF, code]

  4. EMERS: Energy Meter for Recommender Systems
    L. Wegmeth, T. Vente, A. Said, J. Beel. RecSoGood Workshop @ RecSys’24 (Short Paper)
    [Springer, PDF, code, video]

  5. e-Fold Cross-Validation for Recommender-System Evaluation
    M. Baumgart, L. Wegmeth, T. Vente, J. Beel. RecSoGood Workshop @ RecSys’24 (Short Paper)
    [Springer, PDF]

  6. Sustainable Recommender Systems: Optimizing Dataset Size for Energy-Efficient Algorithm Performance
    A. Arabzadeh, T. Vente, J. Beel. RecSoGood Workshop @ RecSys’24 (Short Paper)
    [Springer, PDF, code]

  7. The Effect of Random Seeds for Data Splitting on Recommendation Accuracy
    L. Wegmeth, T. Vente, L. Purucker, J. Beel. PERSPECTIVES ‘23 (RecSys Workshop)
    [CEUR Workshop Proceedings, PDF, code, video]

  8. The Challenges of Algorithm Selection and Hyperparameter Optimization for Recommender Systems
    L. Wegmeth, T. Vente, J.Beel COSEAL’23 (COnfiguration and SElection of ALgorithms Workshop)
    [poster]

  9. The Feasibility of Greedy Ensemble Selection for Automated Recommender Systems
    T. Vente, L. Purucker, J. Beel. COSEAL’22 (COnfiguration and SElection of ALgorithms Workshop)
    [poster]